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Decision analysis produces measures of value such as expected net present values or expected utilities and
ranks alternatives by these value estimates. Other optimization-based processes operate in a similar manner.

With uncertainty and limited resources, an analysis is never perfect, so these value estimates are subject to
error. We show that if we take these value estimates at face value and select accordingly, we should expect the
value of the chosen alternative to be less than its estimate, even if the value estimates are unbiased. Thus, when
comparing actual outcomes to value estimates, we should expect to be disappointed on average, not because of
any inherent bias in the estimates themselves, but because of the optimization-based selection process. We call
this phenomenon the optimizer’s curse and argue that it is not well understood or appreciated in the decision
analysis and management science communities. This curse may be a factor in creating skepticism in decision
makers who review the results of an analysis. In this paper, we study the optimizer’s curse and show that the
resulting expected disappointment may be substantial. We then propose the use of Bayesian methods to adjust
value estimates. These Bayesian methods can be viewed as disciplined skepticism and provide a method for
avoiding this postdecision disappointment.
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The best laid schemes o’ Mice an’ Men,
Gang aft agley,

An’ lea’e us nought but grief an’ pain,
For promis’d joy!

—Robert Burns “To a Mouse: On turning her
up in her nest, with the plough” 1785

1. Introduction
A team of decision analysts has just presented the
results of a complex analysis to the executive respon-
sible for making the decision. The analysts recom-
mend making an innovative investment and claim
that, although the investment is not without risks, it
has a large positive expected net present value. The
executive is inclined to follow the team’s recommen-
dation, but she recalls being somewhat disappointed
after following such recommendations in the past.
While the analysis seems fair and unbiased, she can’t
help but feel a bit skeptical. Is her skepticism justified?
In decision analysis applications, we typically iden-

tify a set of feasible alternatives, calculate the expected
value or certainty equivalent of each alternative, and
then choose or recommend choosing the alternative
with the highest expected value. In this paper, we
examine some of the implications of the fact that the
values we calculate are estimates that are subject to

random error. We show that, even if the value esti-
mates are unbiased, the uncertainty in these estimates
coupled with the optimization-based selection pro-
cess leads the value estimates for the recommended
action to be biased high. We call this bias the “opti-
mizer’s curse” and argue that this bias affects many
claims of value added in decision analysis and in other
optimization-based decision-making procedures. This
curse is analogous to the winner’s curse (Capen et
al. 1971, Thaler 1992), but potentially affects all kinds
of intelligent decision making—attempts to optimize
based on imperfect estimates—not just competitive
bidding problems.
We describe the optimizer’s curse in §2 of this

paper and show how it affects claims of value added
by decision analysis. This phenomenon has been
noted (but not named) in the finance literature by
Brown (1974) and in the management literature by
Harrison and March (1984), who label it postdecision
surprise. However, it seems to be little known and
underappreciated in the decision analysis and broader
management sciences communities. In §3, we con-
sider the question of what to do about the optimizer’s
curse. There we propose the use of standard Bayesian
methods for modeling value estimates, showing that
these methods can correct for the curse and, in so
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doing, may affect the recommendations derived from
the analysis. The prescription calls for treating the
decision-analysis-based value estimates like the noisy
estimates that they are and mixing them with prior
estimates of value, in essence treating the decision-
analysis-based value estimates somewhat skeptically.
In §4, we discuss related biases, including the win-
ner’s curse, and in §5, we offer some concluding
comments.

2. The Optimizer’s Curse
Suppose that a decision maker is considering n alter-
natives whose true values are denoted �1� � � � ��n.
We can think of these “true values” as represent-
ing the expected value or expected utility (whichever
is the focus of the analysis) that would be found
if we had unlimited resources—time, money, com-
putational capabilities—at our disposal to conduct
the analysis. A decision analysis study produces esti-
mates V1� � � � �Vn of the values of these alternatives.
These estimates might be the result of, say, a $50,000
consulting effort, whereas it might cost millions to cal-
culate the true value to the decision maker.1

The standard decision analysis process ranks alter-
natives by their value estimates and recommends
choosing the alternative i∗ that has the highest esti-
mated value Vi∗ . Under uncertainty, the true value �i∗

of a recommended alternative is typically never
revealed. We can, however, view the realized value xi∗
as a random draw from a distribution with expected
value �i∗ and, following Harrison and March (1984),
think of the difference xi∗ − Vi∗ between the realized
value and value estimate as the postdecision surprise
experienced by the decision maker. A positive sur-
prise represents some degree of elation and a neg-
ative surprise represents disappointment. Averaging
across many decisions, the average postdecision sur-
prise xi∗ − Vi∗ will tend toward the average expected
surprise, E��i∗ −Vi∗ 	.
If the value estimates produced by a decision

analysis are conditionally unbiased in that E�Vi ��1�
� � � ��n	=�i for all i, then the estimated value of any
alternative should lead to zero expected surprise, i.e.,
E��i −Vi	= 0. However, if we consistently choose the
alternative with highest estimated value, this selection
process leads to a negative expected surprise, even if

1 Our use of “true values” is in the spirit of Matheson (1968), who
refers to probabilities or values “given by a complete analysis.” Tani
(1978) objects to the use of “true” in this context, noting that this
value is subjective and depends on the decision maker’s state of
information; he refers to “authentic probabilities” rather than “true
probabilities.” These concerns notwithstanding, the use of the term
“true values” in this setting seems both natural and standard, hav-
ing been used by Lindley et al. (1979) and Lindley (1986), among
others.

the value estimates are conditionally unbiased. Thus,
a decision maker who consistently chooses alterna-
tives based on her estimated values should expect to
be disappointed on average, even if the individual
value estimates are conditionally unbiased. We for-
malize this optimizer’s curse in §2.3 after illustrating
it with some examples.

2.1. Some Prototypical Examples
To illustrate the optimizer’s curse in a simple set-
ting, suppose that we evaluate three alternatives that
all have true values 
�i� of exactly zero. The value
of each alternative is estimated and the estimates Vi

are independent and normally distributed with mean
equal to the true value of zero (they are conditionally
unbiased) and a standard deviation of one. Selecting
the highest value estimate then amounts to selecting
the maximum of three draws from a standard normal
distribution. The distribution of this maximal value
estimate is easily determined by simulation or using
results from order statistics and is displayed in Fig-
ure 1. The mean of this distribution is 0.85, so in this
case, the expected disappointment, E�Vi∗ −�i∗ 	, is 0.85.
Because the results of this example are scale and loca-
tion invariant, we can conclude that given three alter-
natives with identical true values and independent,
identical, and normally distributed unbiased value
estimates, the expected disappointment will be 85%
of the standard deviation of the value estimates.
This expected disappointment increases with the

number of alternatives considered. Continuing with
the same distribution assumptions and varying the
number of alternatives considered, we find the results
shown in Figure 2. Here, we see that the distributions
shift to the right as we increase the number of alter-
natives and the means increase at a diminishing rate.
With four alternatives, the expected disappointment
reaches 103% of the standard deviation of the value
estimates, and with 10 it reaches 154% of the standard
deviation of the value estimates.

Figure 1 The Distribution of the Maximum of Three Standard Normal
Value Estimates
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Figure 2 The Distribution of the Maximum of n Standard Normal Value Estimates
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The case where the true values are equal is, in a
sense, the worst possible case because the alterna-
tives cannot be distinguished even with perfect value
estimates. Figure 3 shows the results in the case of
three alternatives, where the true values are separated
by � �i = −��0�+�. The value estimates are again
assumed to be unbiased with a standard deviation
of one. In Figure 3, we see that the magnitude of
the expected disappointment decreases with increas-
ing separation. Intuitively, the greater the separation
between the alternative that is truly the best and the
other alternatives, the more likely it is that we will
select the correct alternative. If we always select the
truly optimal alternative, then the expected disap-
pointment would be zero because its value estimate
is unbiased.
We have assumed that the value estimates are inde-

pendent in the above examples. In practice, how-
ever, the value estimates may be correlated, as the
value estimates for different alternatives may share
common elements. For example, in a study of differ-
ent strategies to develop an R&D project, the value
estimates may all share a common probability for
technical success; errors in the estimate of this proba-
bility would have an impact on the values of all of the

Figure 3 The Distribution of Maximum Value Estimates with Separation Between Alternatives
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alternatives considered. Similarly, a study of alterna-
tive ways to develop an oil field may share a common
estimate (or probability distribution) of the amount of
oil in place. In practice then, we might expect value
estimates to be positively correlated.
To illustrate the impact of correlation in value esti-

mates, consider a simple discrete example with two
alternatives that have equal true values and value
estimates that are equally likely to be low or high
by some fixed amount. This setup is illustrated in
Table 1. If the two value estimates are independent,
there is a 75% chance that we will observe a high
value estimate for at least one alternative and over-
estimate the true value of the optimal alternative and
a 25% chance of underestimating the true value; the
value estimate of the selected alternative will thus
overestimate the true value on average. If the two
value estimates are perfectly positively correlated,
there is a 50% chance of both estimates being high
and a 50% chance of both being low, and we would
have an estimate for the selected alternative that is
equal to the true value on average. Thus, we should
expect positive correlation to decrease the magni-
tude of the expected disappointment. Negative cor-
relation, on the other hand, should increase expected
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Table 1 A Simple Discrete Example with
Dependence

Project 1 high Project 1 low

Project 2 high HH LH
Project 2 low HL LL

disappointment, but negative correlation is less likely
to hold in practice.
While the previous examples have assumed that the

true values are fixed, the true values will be uncer-
tain in practice. Just as we might expect value esti-
mates to be positively correlated, we might expect
the true values to be positively correlated for the
same reasons. For example, uncertainty about a prob-
ability of technical success may lead to the true val-
ues for alternatives that depend on this probability
being positively correlated. While positive correlation
among the value estimates decreases expected disap-
pointment, positive correlation among the �is tends
to decrease the separation among the true values,
which, as discussed earlier, increases expected disap-
pointment. Table 2 shows how the expected disap-
pointment varies with correlation in a setting where
there are four alternatives and the true values have
standard normal distributions with a common pair-
wise correlation that varies across rows in the table.
The value estimates have a mean equal to the true
mean (and are thus conditionally unbiased), a stan-
dard deviation of one, and a common pairwise cor-
relation that varies across the columns in the table.
In the no-correlation case, the expected disappoint-
ment is 73% of the common standard deviation of
the value estimates and true values.2 As expected,
increasing the correlation among the Vis decreases
the expected disappointment; increasing the correla-
tion among the �is has the opposite effect. Moving
along the diagonal in Table 2, we see that increas-
ing both correlations simultaneously leads to a net
decrease in expected disappointment. Even with mod-
estly high degrees of correlation, say, with both cor-
relations at 0.5 or 0.75, the expected disappointment
remains substantial at 52% or 36% of the standard
deviation of the value estimates and true values.

2.2. Claims of Value Added in Decision Analysis
In decision analysis practice, it is common to cal-
culate and report the “value added” by an analy-
sis. Value added is typically defined as the difference
between the estimated value of the optimal alterna-
tive identified in the analysis and the estimated value

2 This is less than the expected disappointment in Figure 2 because
the results in Figure 2 assume that all of the true values are iden-
tical. Here, the true values are uncertain and may be separated,
thereby decreasing the expected disappointment.

Table 2 Expected Disappointment as a Function of Correlation in
Value Estimates and in True Values

Correlation among value estimates (Vis)

0.00 0.25 0.50 0.75 0.90

Correlation among
true values (�is)

0.00 0.73 0.59 0.41 0.22 0.09
0.25 0.78 0.64 0.45 0.25 0.12
0.50 0.84 0.69 0.52 0.29 0.12
0.75 0.92 0.77 0.58 0.36 0.18
0.90 0.98 0.84 0.67 0.43 0.23

of a default alternative (or current plan) that would
have been chosen if no analysis were done. Even
though the estimated value of each alternative may
be unbiased, the value of the optimal alternative will
be affected by the optimizer’s curse and such claims
of value added will also be affected.
Clemen and Kwit (2001) considered 38 well-doc-

umented studies at Eastman Kodak from 1990–1999
and estimated the total value added by decision anal-
ysis at Kodak in this period. Lacking a preidentified
default alternative in these analyses, they focused on
an alternative measure of value added as the differ-
ence between the value (defined as the expected net
present value) of the optimal alternative and the aver-
age estimated value for all of the alternatives consid-
ered in the study. This measure of value added will be
nonnegative by definition and will also be affected by
the optimizer’s curse. The total value added in these
38 studies, using Clemen and Kwit’s (2001) measure
of value added, is $487 million.3

We can use Clemen and Kwit’s (2001) data to per-
form some simulations to give a sense of the mag-
nitude of the expected disappointment that might be
experienced in practice. In our simulations, we take
the Kodak value estimates to be true values and gen-
erate sample value estimates from these true data.
Specifically, we take the true value 
�i� for each alter-
native to be the value given by Kodak’s decision anal-
ysis study and generate value estimates 
Vi� for each
alternative that are independent and normally dis-
tributed with mean �i and standard deviation equal
to 5%, 10%, or 25% of the absolute value of �i. (We
consider a correlated case below.) For each study, we
then select the alternative with the maximum value
and calculate the “claimed value added” as the dif-
ference between this maximum value and the average
of the value estimates for all alternatives considered

3 Clemen and Kwit (2001) also consider two other measures of value
added, which are similarly affected by the optimizer’s curse but
will not be discussed here. They also extrapolate from this sample
of 38 well-documented studies to estimate a total value added of
approximately $1 billion for all studies done in this time frame.
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Figure 4 Simulation Results Based on Clemen and Kwit’s (2001)
Kodak Data
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in that study. With these assumptions, the true value
added is the $487 million reported by Clemen and
Kwit (2001).
The results of this simulation exercise are sum-

marized in the cumulative probability distributions
of Figure 4. With standard deviations of 5% in the
value estimate, value added is overestimated approxi-
mately 75% of the time and the average claimed value
added is $555 million, which overstates the true value
added ($487 million) by 14%. With standard devia-
tions of 10% and 25%, the value added is overesti-
mated even more frequently and the average claimed
value added jumps to $678 million and $1.111 billion,
overstating the true value added by 39% and 128%,
respectively. Thus, the optimizer’s curse can have a
substantial impact on estimates of value added.
To illustrate the effects of dependence, we also ran a

simulation where the standard deviation of Vi is 10%
of the absolute value of �i and the value estimates
for each study were correlated with pairwise corre-
lation coefficients equal to 0.5. (The value estimates
are correlated within each study but are still assumed
to be independent across studies.) The total claimed
value in this case is $602 million (compared to $678
million in the independent case), overstating the true
value added by 24% (compared to 39% in the inde-
pendent case). Thus, positive dependence reduces the
magnitude of the effect of the optimizer’s curse, but
it remains considerable.

2.3. Formalizing the Optimizer’s Curse
Having illustrated the curse with some examples, we
now formally state the result.

Proposition 1. Let V1� � � � �Vn be estimates of �1�
� � � ��n that are conditionally unbiased in that E�Vi �
�1� � � � ��n	 = �i for all i. Let i∗ denote the alternative
with the maximal estimated value Vi∗ =max�V1� � � � �Vn�.
Then,

E��i∗ −Vi∗ 	≤ 0� (1)

Moreover, if there is some chance of selecting the “wrong”
alternative (i.e., �i∗ not being maximal in ��1� � � � ��n��,
then E��i∗ −Vi∗ 	 < 0.

Proof. Let us first consider a fixed set of true val-
ues � = 
�1� � � � ��n� with uncertain value estimates
V= 
V1� � � � �Vn�. Let j∗ denote the alternative with the
maximum true value �j∗ = max��1� � � � ��n�. With �
fixed and V uncertain, j∗ is a constant and i∗ is a ran-
dom variable. For any V, we have

�i∗ −Vi∗ ≤�j∗ −Vi∗ ≤�j∗ −Vj∗ � (2)

The first inequality follows from the definition of j∗

and the second from the definition of i∗. Taking expec-
tations of (2) conditioned on � and integrating over
the uncertainty regarding the value estimates (with
distribution V ��), we have

E��i∗ −Vi∗ ��	≤ E��j∗ −Vj∗ ��	= 0� (3)

with the equality following from our assumption
that the value estimates are conditionally unbiased.
Because E��i∗ − Vi∗ ��	 ≤ 0 for all �, integrating over
uncertain � yields E��i∗ − Vi∗ 	 ≤ 0 as stated in the
proposition. If there is no chance of selecting the
wrong alternative (i.e., i∗ = j∗ with probability one),
then the inequalities in (2), and hence in (3), all
become equalities and E��i∗ −Vi∗ 	= 0. If a nonoptimal
alternative is selected, then the first inequality in (2)
will be strict. Thus, if there is some chance of this hap-
pening, then the inequality in (3) will be strict and
E��i∗ −Vi∗ 	 < 0. �

Thus, a decision maker who consistently chooses
alternatives based on her estimated values should
expect to be disappointed on average, even if the
individual value estimates are conditionally unbiased.
This optimizer’s curse is quite general and does not
rely on any of the specific assumptions (e.g., normal
distributions) used in our illustrative examples.

3. What to Do About the Optimizer’s
Curse

The numerical examples of the previous section indi-
cate that the effects of the optimizer’s curse may
be substantial. In this section, we consider the ques-
tion of what to do about the curse: How should we
adjust our value estimates to eliminate this effect?
How should it affect decision making?
The key to overcoming the optimizer’s curse is

conceptually quite simple: model the uncertainty in
the value estimates explicitly and use Bayesian meth-
ods to interpret these value estimates. Specifically, we
assign a prior distribution on the vector of true val-
ues �= 
�1� � � � ��n� and describe the accuracy of the
value estimates V= 
V1� � � � �Vn� by a conditional dis-
tribution V ��. Then, rather than ranking alternatives
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based on the value estimates, after we have done the
decision analysis and observed the value estimates V,
we use Bayes’ rule to determine the posterior distri-
bution for � �V and rank and choose among alterna-
tives based on the posterior means, �vi = E��i �V	 for
i = 1� � � � �n. For example, in the models developed
later in this section, the posterior mean is a weighted
average of the value estimate Vi and prior mean �̄i,

�vi = �iVi + 
1−�i��̄i� (4)

where �i 
0<�i < 1� is a weight that depends on the
relative accuracies of the prior estimate and value esti-
mate. These posterior means combine the information
provided by the value estimates Vi with the decision
maker’s prior information, and could be interpreted
as treating the value estimates somewhat skeptically.
By revising the value estimates in this way, we

obtain posterior value estimates �vi that do not exhibit
the optimizer’s curse, either conditionally (given any
particular estimate of V) or unconditionally. We for-
malize this result as follows.

Proposition 2. Let V = 
V1� � � � �Vn� be estimates of
�= 
�1� � � � ��n�, let �vi = E��i �V	, and let i∗ be the alter-
native with the maximal posterior value estimate �vi∗ =
max��v1� � � � � �vn�. Then, E��i∗ − �vi∗ �V	= E��i∗ − �vi∗ 	= 0.
Proof. We prove this result by first conditioning

on V and integrating out uncertainty about � given V.
For a given set of value estimates V, the alterna-
tive i∗ with the maximum posterior value estimate �vi∗

is fixed. The conditional expectation of �i∗ − �vi∗ is

E��i∗ − �vi∗ �V	 = E��i∗ −E��i∗ �V	 �V	

= E��i∗ �V	−E��i∗ �V	= 0�
The first equality here follows from the definition

of �vi∗ and the second equality follows from the linear-
ity of expectations and the definition of conditional
expectations. Thus, for every value estimate V, E��i∗ −
�vi∗ �V	= 0. If we then integrate over uncertainty in the
value estimates, we find E��i∗ − �vi∗ 	= 0. �

Thus, the decision maker who interprets value esti-
mates as a Bayesian skeptic should not be expected to
be disappointed on average.
Before we consider specific examples of Bayesian

models, it may be useful to provide some intuition
about how the revised estimates overcome the opti-
mizer’s curse. For models with posterior means of
the form of Equation (4), the expected disappoint-
ment associated with a given value estimate Vi is
E�Vi −�i �V	= Vi − �vi = 
1− �i�
Vi − �̄i�. If we evalu-
ate n alternatives and choose the one with the highest
value estimate (alternative i∗), the expected disap-
pointment is E�Vi∗ − �i∗ �V	 = Vi∗ − �vi∗ = 
1 − �i∗� ·

Vi∗ − �̄i∗�. Note that as the number of alternatives

increases, we expect Vi∗ to increase because of the
order statistic effect illustrated in Figure 2, and the
expected disappointment will increase accordingly
even if �i does not change with n. On the other hand, if
we base our decision on the revised estimates, choos-
ing the alternative j∗ with the highest revised esti-
mate, the expected disappointment is E��vj∗ −�j∗ �V	=
�vj∗ − �vj∗ = 0. The key issue here is proper conditioning.
The unbiasedness of the value estimates Vi discussed
in §1 is unbiasedness conditional on �. In contrast, we
might think of the revised estimates �vi as being unbi-
ased conditional on V. At the time we optimize and
make the decision, we know V but we do not know
�, so proper conditioning dictates that we work with
distributions and estimates conditional on V.

3.1. A Multivariate Normal Model
We illustrate this Bayesian approach by considering
some standard models that demonstrate features of
the general problem while allowing simple calcula-
tions; similar models are discussed in Gelman et al.
(1995) and Carlin and Louis (2000). Suppose that the
prior distribution on the vector of true values � =

�1� � � � ��n� is multivariate normal with mean vec-
tor �̄ = 
�̄1� � � � � �̄n� and covariance matrix � ′; we
abbreviate this as � ∼ N
�̄�� ′�.4 Further, suppose
that, given the true values �, the value estimates V=

V1� � � � �Vn� are also multivariate normal, with V ��∼
N
��� �; these value estimates are conditionally un-
biased in that their expected value is equal to the true
value. Then, applying standard results for the multi-
variate normal distribution, we can find the following
unconditional (predictive) distribution on V and pos-
terior distribution for � �V:

V∼N
�̄�� ′ +� � and (5a)

� �V∼N
�v�� ′′�� where (5b)

�=��� +� 	−1� (5c)

�v=�V+ 
I−���̄� and (5d)

� ′′ = 
I−��� ′� (5e)

Thus, the posterior mean for alternative i, �vi =
E��i �V	, given as the ith component of �v, is a com-
bination of the prior mean vector �̄ and observed
value estimates V with the mixing described by the
matrix �.

3.2. The Independent Normal Case
If we assume that the true values �= 
�1� � � � ��n� are
independent and the value estimates V= 
V1� � � � �Vn�
are conditionally independent given �, then the
covariance matrices � ′ and � are diagonal and the

4 We adopt the convention that all vectors are column vectors unless
indicated otherwise.
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Bayesian updating process decouples into indepen-
dent processes for each alternative. Specifically, sup-
pose that �i ∼N
�̄i��

2
�i
� and Vi ��i ∼N
�i��

2
Vi
�. Then,

the posterior distribution �i �Vi ∼N
�vi��
2
�i �Vi

�, where

�i =
1

1+�2Vi
/�2�i

� (6a)

�vi = �iVi + 
1−�i��̄i� and (6b)

�2�i �Vi
= 
1−�i��

2
�i
� (6c)

Thus, the posterior value estimate �vi = E��i �V	 de-
pends on the prior mean �̄i and the variance ratio
�2Vi

/�2�i
that describes the relative accuracy of the esti-

mation process. If the estimation process is very accu-
rate, �2Vi

will be small compared to �2�i
and �i will

approach one. In this case, the posterior mean �vi will
approach the value estimate Vi. With less accurate
estimation processes, the posterior mean �vi will be a
convex combination of Vi and �̄i, and thus will be
shrunk toward the prior mean �̄i.
We can demonstrate this simple model by apply-

ing it to a specific study performed at Kodak in 1999,
identified in Clemen and Kwit (2001) as study 99-9.
Figures 5(a) and (b) show the results. In Figure 5(a),
we assume that all of the seven alternatives have a
common variance ratio 
�2Vi

/�2�i
� of 20% and a com-

mon prior mean �̄i = 0. (The bottom two alterna-
tives have very similar values.) The value estimates
for each alternative 
Vi� are shown on the left side
of the figure and the revised value estimates 
�vi� for
the same alternatives are shown on the right, with
each line connecting the two estimates for a particular
alternative. Thus, the seven lines in each figure rep-
resent the seven alternatives. In this case, the value
estimates are all shrunk toward the prior mean with
a common weight �i = �= 0�8333 on each value esti-
mate and 1−�= 0�1667 on the prior mean. The value
of the recommended alternative is shrunk from $80.0

Figure 5 Shrinkage Estimates with Common Variance Ratios (a) and
Different Variance Ratios (b)
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to $66.7 million and the value added by the analy-
sis (the difference between the maximal value and the
average for all alternatives) is reduced from $46.6 to
$38.8 million.
While the ranking of alternatives is not changed

if the alternatives all have the same prior mean and
variance ratio, shrinkage may lead to different rank-
ings when the variance ratios differ across alterna-
tives. In particular, alternatives whose values are hard
to estimate may be passed over by alternatives with
lower, but more accurate, value estimates. This is
demonstrated in Figure 5(b). Here, we use the same
value estimates and prior mean as in Figure 5(a), but
allow the different alternatives to have variance ratios
of either 20% or 50%, as noted in Figure 5(b). In this
case, the alternative with the highest value estimate Vi

is not preferred when ranked by posterior means: the
difficulty in accurately estimating its value causes the
estimate to be treated more skeptically and shrunk
further toward the prior mean. Examining Equation
(6b), it is easy to see that the rankings of alternatives
may also be affected by differences in prior means.

3.3. Identical Covariance Structures
As indicated in §2.1, in many applications we might
expect the value estimates for the different alterna-
tives to be correlated because the alternatives share
some common elements, and the true values might be
correlated also for the same reasons. There we men-
tioned the example of a study considering alternative
ways to pursue an R&D project, where a probability
of technical success and the estimate of this proba-
bility are relevant for the different alternatives being
considered. If the value estimates and true values
depend on such underlying factors in the same way,
we might expect the covariance matrices for the value
estimates and true values (� and� ′) to be similar in
some sense.
The Bayesian updating formulas simplify consider-

ably if we assume that the two covariance matrices
are identical up to a change of scale, � = �� ′. Here,
we can think of the value estimation process (with
covariance matrix � ) preserving the same covariance
structure as the true values, but with the uncertainty
changed by a variance ratio of �. In this case, the mix-
ing matrix � = � ′�� ′ + � 	−1 = � ′�� ′ + �� ′	−1 =

1+ ��−1I, where I is the n-by-n identity matrix. The
posterior means are given by

�vi = �iVi + 
1−�i��̄i� (7)

and the posterior covariance matrix is � ′′ = 
1−�� ·
� ′, where �i = � = 
1 + ��−1 for all i. Comparing
this �i with Equation (6a), we see that the variance
ratio � plays exactly the same role in terms of �i

as in the independent case, and the posterior means
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are determined separately in exactly the same man-
ner in Equations (6b) and (7). Thus, when the two
covariance matrices share a common structure, the
dependencies among the Vis and among the �is “can-
cel” in terms of their effects on the revised value esti-
mates in the sense that for a given V, we wind up
with the same revised estimates that would be given
in the independent case. For example, the results of
Figure 5(a) could have been generated by a model
where the value estimates and true values are corre-
lated and � = �� ′, with � = 20%.5

3.4. A Hierarchical Model
The two previous examples of Bayesian models rely
heavily on the assessment of the prior mean for each
alternative. In some cases, a decision maker may be
able to specify these means without much difficulty.
In other cases, however, such assessments may be dif-
ficult and the decision maker may want to use the
observed value estimates themselves to estimate the
mean of the �is. A natural Bayesian way to do this
is to treat the mean true value itself as uncertain and
use the observed value estimates V = 
V1� � � � �Vn� to
update the prior distribution of this mean true value.
We now describe a hierarchical model that illustrates
these features.
Suppose that the value estimates are indepen-

dent and multivariate normal with identical accuracy:
V ��∼N
���2V I�. The true values �= 
�1� � � � ��n� are
uncertain and drawn independently from a multivari-
ate normal distribution: � � �̄ ∼ N
�̄1��2�I�, where �̄
is a scalar and 1 is an n-vector of ones, 
1� � � � �1�.
Finally, at the top level of the hierarchy, suppose that
the mean true value, �̄, is uncertain and has a univari-
ate normal prior distribution: �̄∼N
�0��

2
0 �. Thus, in

this model, it is as if we draw true values at random
from a distribution whose mean is uncertain. We then
observe independent estimates of these true values
and use these estimates to update our estimates of the
individual true values 
�1� � � � ��n� and the mean true
value �̄.
This hierarchical model fits into the two-level

model developed in §3.1 by taking �̄= �01�� = �2V I,
and � ′ = �2�I + �2011

T. With these special assump-
tions, we can find an analytic form for the mixing
matrix � (Equation (5c)) and the posterior means �v=
�V + 
I − ���̄. Specifically, �vi = E��i �V	 becomes a
weighted combination of the value estimate Vi, the

5 While the adjustments to the value estimates do not vary with
the degree of correlation when they share a common correlation
structure, the overall expected disappointment may vary because it
depends on the joint distribution of true values and value estimates.
For example, the diagonal cases in Table 2 have common covariance
structures and the overall expected disappointment varies with the
degree of correlation.

prior mean �0, and the average value estimate �V =
∑n

i=1Vi/n:
�vi =w1Vi +w2�0+w3 �V � (8)

with weights

w1 =
�2�

�2� +�2V
= 1
1+�2V /�

2
�

� (8a)

w2 =
�2V

n�20 +�2� +�2V
� and (8b)

w3 =
n�20�

2
V


�2� +�2V �
n�
2
0 +�2� +�2V �

� (8c)

With a little algebra, we can see that these weights
sum to one. Note that the weight w1 on the value
estimate Vi is of the same form as the weights �i

in the two previous models (Equations (6a) and (7)),
with the remaining weight 1 − w1 split between the
prior mean �0 and the average of the value esti-
mates �V . The weight w1 on the value estimate does
not depend on the uncertainty in the prior mean

�20 �, but the allocation of the remaining weight to the
prior mean �0 and average value estimate �V depends
on this uncertainty. As our uncertainty about the
mean true value decreases (i.e., �20 → 0), the weight
on the average value estimate �V approaches 0. On
the other hand, as our uncertainty about the true
mean increases (i.e., �20 →��, the weight on the prior
mean �0 approaches 0. In this latter case, the poste-
rior mean �vi reduces to a weighted combination of the
value estimate Vi and the observed average value �V ,
exactly like the independent case in §2.2, but with
the average value �V appearing in place of the prior
mean �̄i.
We can illustrate this hierarchical model by apply-

ing it to the same example considered in Figure 5(a).
In Figure 6, we show the results in the limiting
case, where we assume little prior information about

Figure 6 Shrinkage Estimates with a Hierarchical Model
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the mean true value 
�20 → �� and consider a vari-
ance ratio of 20%, as in Figure 5(a). In this case,
the posterior mean for each alternative is a weighted
average of the value estimate for that alternative and
the average value estimate for all alternatives: specifi-
cally �vi = 0�833Vi + 
1−0�833��V , where �V = $33�4 mil-
lion with these alternatives. The shrinkage in this case
is then similar to the shrinkage in the example in Fig-
ure 5(a), but with the value estimates shrunk toward
a mean of $33.4 million instead of the prior mean of 0
assumed earlier. For example, the maximum value
estimate of $80 million is shrunk to $72.4 million in
this case rather than $66.7 million in the earlier exam-
ple. The value added by the analysis is $38.8 million
rather than the $46.2 million calculated in Clemen and
Kwit (2001). Shrinkage with this model does not lead
to any changes in the ranking of alternatives, because
we have assumed the variances are equal for all alter-
natives. If we used a more complex hierarchical model
with differing variances, we might find changes in
rankings like those shown in Figure 5(b).

3.5. Assessment Issues
While the models considered in §§3.2–3.4 are intro-
duced primarily as examples that demonstrate
Bayesian procedures for adjusting value estimates, the
fact that these models allow simple calculations may
make them useful as rough approximations in prac-
tice. The rules for adjusting value estimates given by
these models all reduce to a revised estimate that is a
weighted average of the form

�vi = �iVi + 
1−�i��̄i� (9)

where in the hierarchical case, the prior mean �̄i is
replaced by a mix of the average value estimate �V
and the prior mean �0. In each of these models, �i =

1+�i�

−1, where �i is a variance ratio equal to �2Vi
/�2�i

or the matrix equivalent of that in §3.2.
To apply Equation (9), we need to assess a prior

mean and a variance ratio. We believe that many
decision makers would be comfortable assessing a
prior mean for a given alternative before observing
the results of an analysis. Ideally, these assessments
would be made before the analysis is begun. In prac-
tice, however, the alternatives under consideration
often evolve during the analysis, and it may be dif-
ficult to get a truly “prior” assessment. Nevertheless,
these assessments might be made before seeing the
final value estimates from the analysis or might be
made as a hypothetical exercise after the analysis, e.g.,
by asking questions like: Before you saw the results
of this analysis, what would you have estimated the
value to be?
To assess the variance ratio, we could assess �Vi

and ��i
and calculate the ratio. Our sense is that ��i

may often be fairly straightforward to assess: as a

decision maker assesses a prior mean, we could
prompt for a range (e.g., the 10th and 90th percentiles)
that could be used to determine ��i

. Asking about
a range could increase the comfort level of the deci-
sion maker about assessing the mean if he is quite
uncertain about the value of the alternative. We could
also ask hypothetical questions after the analysis like:
Before you saw the results of this analysis, how uncer-
tain were you about the value?
Assessing �Vi

requires contemplating questions
such as: If the true value of an alternative is x, what
range of values would you expect to see resulting
from the analysis? When teaching complex decision
analysis cases, we have been struck by the range
of value estimates given by different student teams.
Sometimes the differences in estimates reflect mod-
eling errors, and other times the differences reflect
reasonable variation in interpretations of facts in the
case. The range of student answers will depend on
the ambiguity in the case, how good the students
are at analysis, and how much time and effort the
students put into the case. The assessment of �Vi

in professional applications will depend on similar
considerations, and we would expect these assess-
ments and ratios to vary significantly across different
applications.
Alternatively, rather than assessing the accuracy of

the analysis �Vi
and calculating the variance ratio,

we might think about assessing �i, the weight on
the value estimate for alternative i, by comparing
the uncertainty before and after the analysis. Not-
ing that the posterior variances are given by �2�i �Vi

=

1− �i��

2
�i
(or the matrix equivalent in §3.3), we can

think about �i as the fraction of the prior uncer-
tainty about the value of alternative i (measured as
a variance) eliminated by doing the analysis. We can
estimate �i by assessing the prior variance �2�i

(as
discussed before) and assessing the posterior vari-
ance �2�i �Vi

. We might assess �2�i �Vi
after the analysis

by asking questions such as: If you had another year
and unlimited resources for additional analysis, how
much might the estimate change? If we prompt for
a range (e.g., the 10th and 90th percentiles) for the
potential change, we could use this to estimate �2�i �Vi

and then calculate �i.
Figure 7 shows a plot of the weight �i on the value

estimate Vi as a function of the ratio of standard
deviations, �Vi

and ��i
. Here, we see that if the value

estimates are quite accurate compared to the prior
estimate 
�Vi

/��i
is near zero), the weight on the

value estimate is very near one. The weights initially
decrease slowly as this ratio increases. While it is
difficult to speculate about what these values will
be in practice, suppose, for example, that the ratios
�Vi

/��i
are in the 20%–50% range. This would imply

that when revising value estimates, we should put
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Figure 7 Relationship Between the Weight on the Value Estimate and
Accuracy Assessments
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weights �i of 95%–80% on the value estimate from
the analysis and weights 1 − �i of 5%–20% on the
prior estimate of value. Thinking in terms of variance
reduction, this would correspond to analysis reducing
the uncertainty about the true value by 80%–95%. We
suggest these numbers only as a representative range,
and encourage others to think carefully through these
issues and develop their own assessments in the con-
text of the particular problem at hand.

4. Related Biases and “Curses”
We believe that the optimizer’s curse is at best under-
appreciated and at worst unrecognized in decision
analysis and management science. As mentioned ear-
lier, the phenomenon has been noted, though not
studied in detail, in other settings. In the finance lit-
erature, Brown (1974) considers the context of rev-
enue and cost estimates in capital budgeting. He
observes that a project is more likely to be accepted
if its revenues have been overestimated and its costs
underestimated, and that the selection process may
thus introduce a bias of overestimating the value
of accepted projects. In the organizational behavior
literature, Harrison and March (1984) label this phe-
nomenon postdecision surprise or postdecision dis-
appointment, demonstrate it with a simple normal
model, and discuss organizational implications of the
phenomenon. Neither Brown (1974) nor Harrison and
March (1984) present a general result like our Propo-
sition 1 or offer constructive advice about what to
do about the curse as we do in §3. Harrison and
March (1984, p. 38) conclude: “Intelligent decision
making with unbiased estimation of future costs and
benefits implies a distribution of postdecision sur-
prises that is biased in the direction of disappoint-
ment. Thus, a society that defines intelligent choice
as normatively appropriate for individuals and orga-
nizations imposes a structural pressure toward post-
decision unhappiness.” Brown (1974) concludes by
calling for additional research about how to overcome
the curse.

As noted in the introduction, the optimizer’s curse
is analogous to the winner’s curse (Capen et al. 1971,
Thaler 1992), which refers to the tendency for the
highest bidder in an auction with common or inter-
dependent values to have overestimated the value of
the item being sold. The underlying argument is sim-
ilar to that of the optimizer’s curse, with overestimat-
ing the value increasing the chance of winning the
auction. A Bayesian analysis of the situation, look-
ing in advance at the expected value of the item
to a bidder given that the bidder wins, indicates
that bidders should hedge their bids by bidding less
than their value estimates (Winkler and Brooks 1980).
However, the competitive situation of the auction
is very different from the situation considered here
and requires the use of game-theoretic reasoning. The
analysis of these auctions typically requires strong
common knowledge assumptions and, for tractability,
often focuses on symmetric equilibria (e.g., Krishna
2002). The optimizer’s curse is a much more preva-
lent phenomenon that, as Harrison and March (1984)
argue, affects all kinds of intelligent decision making,
not just competitive bidding problems.
There is also a connection between the optimizer’s

curse and the survivorship bias effect noted in the
finance literature (e.g., Brown et al. 1992). For exam-
ple, the average performance of mutual funds is
inflated because poorly performing funds are closed.
Decision analysis and other optimization processes,
with the choice of only one alternative from a set of
possibilities, represent the extreme form of survivor-
ship bias, with only one survivor. A publication bias
or reporting bias in which only favorable results are
reported yields results similar in nature to the sur-
vivorship bias, as do some forms of sampling bias
(e.g., sampling plans that lead to systematic under-
representation of lower income households in surveys
of family expenditures).
The optimizer’s curse is also related to regression to

the mean, a phenomenon that is often discussed when
regression is introduced in basic statistics courses. For
example, high performers on one test are likely to
perform less well on subsequent tests. Thus, their
expected performance on subsequent tests is less
than their performance on the first test, analogous to
the expected true value of an alternative being less
than its estimated value. Harrison and March (1984)
describe postdecision disappointment as a form of
regression to the mean. The notion of shrinkage esti-
mators, such as those developed in §3, has connec-
tions with regression to the mean as well as with
empirical Bayes and hierarchical Bayes procedures
(e.g, Gelman et al. 1995, Carlin and Louis 2000).
The models in §3 result in shrinkage from the value
estimates toward a prior mean, toward the mean of all
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of the value estimates, or toward some convex com-
bination of those two.
This process for adjusting value estimates may

seem somewhat similar to ambiguity aversion or
uncertainty aversion (Ellsberg 1961) in that it penal-
izes good alternatives for uncertainty in the value esti-
mates, with the magnitude of the penalty increasing
with the uncertainty in the estimate. However, the
shrinkage process here will adjust low values upward
toward the prior mean. In contrast, ambiguity aver-
sion leads only to values being adjusted down for
uncertainty in the value estimates.
Bell (1985) considers the implications of aversion

to disappointment for decision making and decision
modeling under uncertainty, where he defines dis-
appointment as “a psychological reaction caused by
comparing the actual outcome of a lottery to one’s
prior expectations” (p. 1). When an analysis has been
performed, the value estimate Vi∗ of a chosen alter-
native serves as a natural reference point to which
the true value is compared when it is learned. To
the extent that decision makers associate some disu-
tility with disappointment, as Bell (1985) suggests,
the inflation of value estimates caused by the opti-
mizer’s curse would increase this disappointment and
decrease the decision maker’s expected and experi-
enced utility.
Finally, our work has connections to the decision

analysis literature on using experts. Our advice in §3
calls for explicitly modeling the results of analysis as
uncertain and suggests the use of Bayesian techniques
for interpreting these results. In essence, we recom-
mend viewing the result of an analysis as being anal-
ogous to an expert report and treating it in much the
same way as Morris (1974) recommends. While this
Bayesian approach to interpreting decision analysis
results has been considered by Nickerson and Boyd
(1980) and Lindley (1986), these authors did not note
the optimizer’s curse. The expert-use literature may
provide suggestions for developing Bayesian models
analogous to those discussed in §3 for addressing the
curse.

5. Conclusions
The primary goal of this paper is to make the deci-
sion analysis and management science communities
aware of the optimizer’s curse, and to help people
understand how the curse affects the results of an
analysis and how it can be addressed. The curse may
be summarized as follows: If decision makers take
the value estimates resulting from an analysis at face
value and select according to these estimates, then
they should expect to be disappointed on average, not
because of any inherent bias in the estimates them-
selves, but because of the selection process itself. The

numerical examples of §2 suggest that this expected
disappointment may be significant in practice. The
expected disappointment will be even greater, if, as
is often suspected, the value estimates themselves are
biased high.
It would be interesting, but we suspect quite dif-

ficult, to document the optimizer’s curse using field
data. It has proven difficult to document the winner’s
curse by using field data (see, e.g., Thaler 1992 and
Porter 1995), and we think that it would be at least
as difficult to document the optimizer’s curse in this
way. First, few firms keep careful records document-
ing their decision-analysis-based value estimates 
Vi�
and, unlike bids in auctions, these estimates are not
public information. Second, even if we had data on
the value estimates, as with the winner’s curse, it
may be quite difficult to determine the correspond-
ing actual values 
xi∗� for individual project decisions
and to isolate the effects of the curse from other con-
founding factors. In the absence of reliable field data,
it could be interesting to study the curse in a con-
trolled laboratory experiment in which subjects would
be asked to estimate values for complex alternatives,
and then asked to choose one of these alternatives.
The winner’s curse has been found repeatedly in such
laboratory settings (see, e.g., Kagel and Levin 2002).
The key to overcoming the optimizer’s curse is con-

ceptually very simple: treat the results of the analy-
sis as uncertain and combine these results with prior
estimates of value using Bayes’ rule before choos-
ing an alternative. This process formally recognizes
the uncertainty in value estimates and corrects for
the bias that is built into the optimization process by
adjusting high estimated values downward. To adjust
values properly, we need to understand the degree
of uncertainty in these estimates and in the true val-
ues. Although it may be difficult in practice to formu-
late and assess sophisticated models that describe the
uncertainty in true values and value estimates given
by a complex analysis, the models we develop in §3
could perhaps be used to adjust value estimates or
components of these estimates approximately in these
settings.
Analysts are frequently frustrated by having their

results treated skeptically by clients and decision
makers: the analysts work hard to be objective and
unbiased in their appraisals only to find their val-
ues and recommendations discounted by the deci-
sion makers. This “discounting” may manifest itself
by the decision maker insisting on using an exces-
sively high hurdle or discount rate or by the decision
maker exhibiting what may appear to be excessive
risk aversion, ambiguity aversion, or disappointment
aversion. The optimizer’s curse suggests that such
skepticism may well be appropriate. The skeptical
view of experienced decision makers may in fact be
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(in part) a learned response to the effects of the curse,
resulting from informal comparisons of estimates of
value to actual outcomes over time. The Bayesian
methods for adjusting value estimates can be viewed
as a disciplined method for discounting the results of
an analysis in an attempt to avoid postdecision disap-
pointment. They require the decision maker to think
carefully about her prior estimates of value and the
accuracy of the value estimates, and to properly inte-
grate her prior opinions into the analysis.
In summary, returning to the executive mentioned

in the opening paragraph of this paper: Yes, she
does have reason to be skeptical of the results of the
decision analysis. To arrive at values and recommen-
dations she trusts, she should get involved in the anal-
ysis to be sure that it properly includes her opinions
and knowledge and overcomes the optimizer’s curse.
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